

深圳富芯电子

TX8M2261 数据手册

增强型 8 位电控单片机 Rev. V3. 0

重要声明:本公司保留对以下所有产品在可靠性、功能和设计方面作进一步说明的权利,同时保留在未通知的情况下,对本产品所有文档做更改的权利。客户在使用本产品时,请向我司销售人员索要最新文档,特此声明!

修订记录

日期	版本	描述
2025-10-11	V3. 0	1、更新 GATE DRIVER 电气特性的描述; 2、删除 TX8M2261LQ32、 TX8M2261LQ32B、 TX8M2261QF32 相关描述;
2024-09-11	V2. 9	3、更新 GATE DRIVER 电气特性的描述;
2024-09-04	V2. 8	4、增加最大额定值电流描述;
2024-03-30	V2. 7	1、更新 GATE DRIVER 电气特性的描述;
2023-12-19	V2. 6	1、删除 TX8M2261QF32 封装型号;
2023-11-10	V2. 5	1、更新 P21 的引脚说明描述;
2023-07-12	V2. 4	1、修改 ADC 参考电压的描述;
2023-07-05	V2. 3	1、修改 ADC 参考电压的描述;
2023-05-30	V2. 2	1、修改 ADC 参考电压的描述;
2023-05-05	V2. 1	1、增加 TX8M2261LQ32B, TX8M2261QF32 型号封装图;增加封装信息章节的注意事项的内容;
2023-04-25	V2. 0	1、增加 TX8M2261SS24B 型号封装图;
2023-04-23	V1.9	1、补充引脚说明内容中关于预驱的内部 I0 控制;
2023-02-03	V1.8	1、解决部分设备打开阅读时,出现乱码问题;
2022-06-13	V1. 7	1、修改芯片工作温度为-40℃ ~ 105℃。
2022-06-08	V1.6	1、增加 LED 部分功能描述。
2022-05-25	V1.5	1、更正存储器特性的部分参数。
2022-05-20	V1. 4	1、删除 I0 个数描述,因为不同封装 I0 个数不一样。
2022-05-14	V1. 3	1、更新 MCU 电气参数部分测试数据。

2022-05-13	V1.2	1、更正关于供电电压和静态漏电数据的错误描述。
2022-05-09	V1. 1	1、更正关于供电电压和静态漏电数据的错误描述。
2022-05-09	V1. 0	1、初始版本,未来有更新时恕不另行通知,请联 系我司人员获取最新版本。

目 录

1.		产品	品概述	1
	1. 1.		说明	1
	1. 2.		特性	2
	1. 3.		引脚分配	e
	1. 4.		封装信息	7
	1. 5.		封装尺寸图	
0	1. 6.		引脚说明	
2.			电气参数	
	2. 1.		绝对最大额定值	14
	2. 2.		直流电气特性	14
	2. 3.		交流电气特性	16
		2. 3.	1. 上电和掉电时的工作条件	16
		2. 3.	2. 内嵌复位和电源控制模块特性	16
		2. 3.	3. 外部时钟源特性	17
		2. 3.	4. 内部时钟源特性	18
	2. 4.		IO 驱动能力特性	19
	2. 5.		模拟电气特性	19
		2. 5.	1. 12 位 ADC 特性	19
		2. 5.	2. 8 位 DAC 特性	20
		2. 5.	3. 比较器特性	21
		2. 5.	4. 运放特性	21
	2. 6.		存储器特性	22
	2. 7.		EMC 特性	23
		2. 7.	1. ESD 电气特性	23
		2. 7.	2. Latch-Up 电气特性	23
	2. 8.		GATE DRIVER 电气特性	23
		2. 8.	1. 绝对最大额定值(T _A =25℃)	23
		2. 8.	2. 推荐工作范围(TA=25℃)	24
		2. 8.	3. 电学特性参数 (V _{CC} =24.0V, C _L =1000pF, T _A =25℃)	24
		2.8	4	25

1. 产品概述

1.1. 说明

TX8M2261 是一款高性能低功耗的 8051 内核 MCU, 工作主频最高为 48MHz, 内置 16K 字节 LogicFlash 存储器(支持类 EEPROM 功能), 2K 字节 SRAM。

TX8M2261D 内部集成了 3P+3N 型的 55V (TX8M2261B 为 40V) 三相全桥栅极 gate driver,具有三路独立的高低边输出,可以用来驱动全桥电路中的大功率 MOSFET 或 IGBT。内置了直通防止和死区时间,能够避免被驱动的高低侧 MOSFET 或 IGBT 直通,有效保护功率器件;内置了 5V/50mA LD0 (TX8M2261B 为 5V/30mA),内置 LD0 具有短路,过流保护功能;驱动器内置过温保护功能;

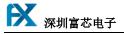
模拟资源:

1个12位500KSPS的SARADC、2个多功能比较器,3个运算放大器。

定时器资源:

- 6个16位高级定时器(3对互补PWM、带死区控制或6路独立PWM)、
- 5个16位通用定时器(都支持Capture、Count、PWM功能)、
- 1个16位唤醒定时器(都支持Capture、Count、PWM功能)、
- 1个8位蜂鸣器(支持PWM、Count功能)、
- 1个看门狗定时器。

标准的通信接口:


1个SPI接口、1个IIC接口和2个UART接口(其中UART1支持DMA工作方式)。

LED 显示功能:

支持多达 8COM x 12SEG。

GPIO:

内置 30K 上下拉电阻,多个驱动档位可配置,每个 IO 都可以作为 ADC 的输入,每个 IO

都可以作为 IO 中断唤醒口。

硬件加速模块:

支持有符号数/无符号数的数学计算功能包括 32 位/16 位除法,16 位/16 位除法,16 位 x16 位乘法,16 位+16 位加法,16 位-16 位减法,32 位开平方;

TX8M2261D 工作电压为 5V~55V (TX8M2261B 为 8V~40V),工作温度范围-40℃ ~ +105℃。 多种省电工作模式保证低功耗应用的要求,最低功耗模式 5uA (MCU) +150uA (Gate Driver)。 TX8M2261 提供 SSOP24 封装形式。

应用场合:

● 电机控制产品

1.2. 特性

▶内核

- 超高速 8051 内核 (1T)
- 指令全兼容传统 8051
- 工作最大主频: 48MHz
- 32 个中断源, 支持硬件两级优先级
- 支持在线调试接口
- 支持代码加密
- 支持带电烧录

▶工作电压

- 6.5V ~ 40V宽电压范围供电

▶存储器

- 16K字节LogicFlash存储器,用于存储用户代码,并且支持类EEPROM(擦写次数典型值 10 万次)
- 2K字节RAM

▶时钟

- 内部 1~48MHz高精度HIRC, 支持校准(误差±1%)
- 内部 64KHz低速LIRC,支持校准(误差±1%)
- 外部 32.768 KHz/8~40MHz晶振,需要外部加电容

▶复位

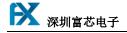
- 上电复位
- 欠压复位
- 复位脚复位
- 看门狗溢出复位
- LVD低压检测复位,提供8级低压检测电压(2.0/2.2/2.4/2.7/3.0/3.7/4.0/4.3V)

▶数字外设

- 1 个SPI高速串行接口,支持主从模式
- 1 个I2C接口, 支持多主和从机模式
- 2个UART接口,最大支持4Mbps

▶定时器资源

- -6个16位高级定时器,支持3对互补输出,支持死区插入和事件刹车功能,支持单脉冲模式。或支持6个独立PWM输出
- -5个16位通用定时器,都支持Capture、Count、PWM功能
- 1 个 16 位唤醒定时器
- -1个8位蜂鸣器定时器
- 1 个看门狗定时器


▶LED显示功能

- 支持多达 8COM x 12SEG

▶高安全性

- 支持 32 bit CRC效验, 保证数据准确性

第3页/共25页

>硬件加速模块

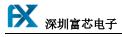
- 支持有符号数/无符号数的算术计算功能
- 支持除法运算(32/16、16/16)
- 支持乘法运算(16x16)
- 支持加法运算(16+16)
- 支持减法运算(16-16)
- 支持开平方运算(32位)

▶低功耗

- 支持IDLE、STOP、SLEEP低功耗模式
- 静态功耗 5uA (MCU) +150uA (Gate Driver)
- 低功耗唤醒时间小于 100us

▶1 个高精度 12 位模数转换器 (ADC)

- 转换时钟最快支持 10MHz, 最大采样率 500KSPS
- 失调校正step 2mV, DNL +-2 INL +-4
- 外部输入通道任意10可选, 2 个模拟通路
- ADC有效位约 10bit (5V稳压器供电,ADC通过内部开关接到芯片的VCC,以此电压作为ADC的参考电压,ADC满量程等于VCC)


▶2 个模拟比较器(ACMP)

- -2个低失调比较器,校正step 1mV
- 比较器支持负端输入精准BG或者VDDADC的 120 个分压档位
- 两个比较器都支持轨道轨输入模式,正端支持 6 个GPIO,负端支持 2 个GPIO

▶3 个可编程增益放大器 (OP)

- 3 个可编程高增益放大器, 多级可配置增益(1/2/4/8/16/32/64/128/256/512)
- 支持OP工作模式,外接电阻调节放大增益

≽GPI0

- 所有端口均可输入输出 5V 信号
- 均支持上升沿/下降沿/双边沿中断
- 均支持上/下拉电阻功能
- 均支持唤醒功能
- 可编程驱动能力,驱动电流范围 4mA $^{\circ}$ 64mA,每个档位调节 4mA。
- 支持OD输出低/高模式。
- 支持独立控制的上下拉电阻,阻值 30KΩ

➤GATE DRIVER特性

特性	TX8M2261B	TX8M2261D
最大额定工作电压	40V	55V
驱动类型	三相PMOS+NMOS驱动	三相PMOS+NMOS驱动
驱动输出电压	10V (VM>11V)	10V (VM>11V)
待机电流	500uA (VCC=24V)	600uA (Vm=24V)
死区时间	50ns	50ns
LDO规格	5V/30mA LDO	5V/50mA LDO
过热保护功能	有	有

▶高可靠性

- ESD HBM 6KV
- -Latch-up ± 200 mA @25°C
- ▶96 位的芯片唯一 ID (UID)

▶封装

- SSOP24
- LQFP32

➤工作温度范围

- -40°C **~**+105°C

1.3. 引脚分配

注意:

TX8M2261SS24B/D 可以支持 12V/24V/36V 电机产品应用;

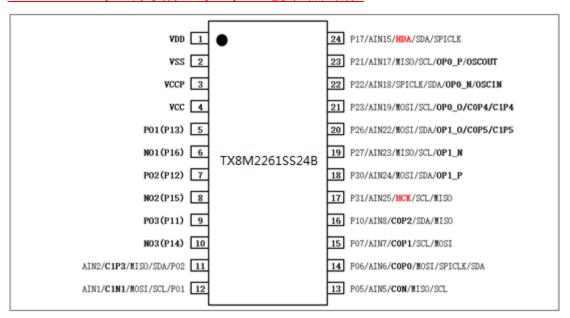


图 1 - TX8M2261SS24B(SS0P24)封装图

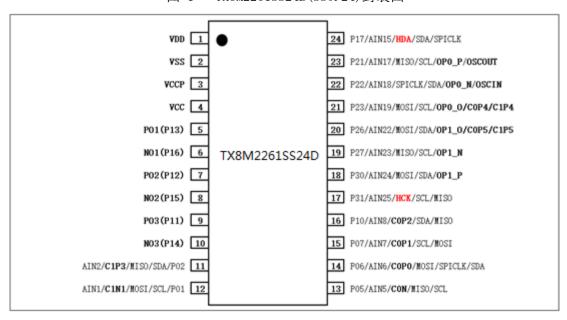


图 2 - TX8M2261SS24D(SS0P24)封装图

1.4. 封装信息

TX8M2261 系列的型号如下表格:

型号	封装	包装
TX8M2261SS24B	SSOP24	管装
TX8M2261SS24D	SSOP24	管装

1.5. 封装尺寸图

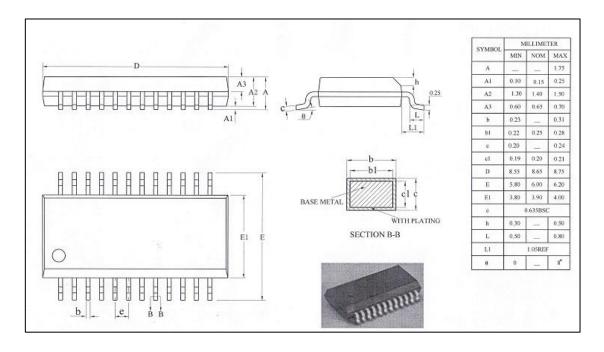
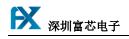



图 2- SSOP24 封装 POD 图

1.6. 引脚说明

引脚名字	I/0	功能描述	复位状态	复用功能
VDD	A	MCU 电源 5. 0V 输入	-	无
		端		
VSS	A	地	_	无
vcc	A	电源 6.5V~40V, 驱	_	无
		动器电源输入端,		
		外接至少 1uF 旁路		
		电容到地。		
VCCP	A	驱动器内部 5V LDO		
		电源输入端		
P01	A	第一通道 PMOS 管	_	TX8M2261SS24B/D 型号内部 P13 控制;
		控制输出端		
NO1	A	第一通道 NMOS 管	_	TX8M2261SS24B/D 型号内部 P16 控制;
		控制输出端		
P02	A	第二通道 PMOS 管	_	TX8M2261SS24B/D 型号内部 P12 控制;
		控制输出端		
NO2	A	第二通道 NMOS 管	-	TX8M2261SS24B/D 型号内部 P15 控制;
		控制输出端		
P03	A	第三通道 PMOS 管	-	TX8M2261SS24B/D 型号内部 P11 控制;
		控制输出端		
NO3	A	第三通道 NMOS 管	_	TX8M2261SS24B/D 型号内部 P14 控制;
		控制输出端		
P01	I/0	Р0 🏻	引脚默认	P01
		每个口都可以设置	为高阻输	AIN1【ADC 输入通道 1】
		为输入或者输出模	λ	C1N1【比较器 1 的负端输入通道 1】
		式		MOSI [SPI MOSI]
P02		输入模块可以使能		P02
		内部上拉		AIN2【ADC 输入通道 2】
		输出模块可以设置		C1P3【比较器 1 的正端输入通道 3】
		开漏输出		MISO 【SPI MISO】

第8页/共25页

深圳 深圳	川田 <i>心</i> り	E 1 Dutte	-in 12Dii AD	C/IIC/SPI/UART/PGA/CMP16K FLASH/1T 8051MCU
P05				P05
				AIN5【ADC 输入通道 5】
				CON【比较器 0 的负端输入通道 0】
				MISO 【SPI MISO】
P06				P06
				AIN6【ADC 输入通道 6】
				COPO【比较器 0 的正端输入通道 0】
				MOSI 【SPI MOSI】
P07				P07
				AIN7【ADC 输入通道 7】
				COP1【比较器 0 的正端输入通道 1】
				SCL [12C SCL]
P10	I/0	P1 □	默认为高	P10
		每个口都可以设置	阻输入	AIN8【ADC 输入通道 8】
		为输入或者输出模		COP2【比较器 0 的正端输入通道 2】
		式		SDA 【12C SDA】
P17		输入模块可以使能		P17
		内部上拉		AIN15【ADC 输入通道 15】
		输出模块可以设置		HDA【烧写调试数据引脚】
		开漏输出		SDA 【12C SDA】
P21	I/0	P2 □	引脚默认	P21
		每个口都可以设置	为高阻输	AIN17【ADC 输入通道 17】
		为输入或者输出模	λ	OSCOUT【晶振输出引脚】
		式		0P0_P【运放 0 的正端】
		输入模块可以使能		OP2_N【运放 2 的负端】
P22		内部上拉		P22
		输出模块可以设置		AIN18【ADC 输入通道 18】
		开漏输出		OSCIN【晶振输入引脚】
				OPO_N【运放 O 的负端】
				0P2_P【运放 2 的正端】
P23				P23
				AIN19【ADC 输入通道 19】
				OPO_0【运放 0 的输出端】

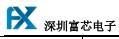
				COP4【比较器 0 的正端输入通道 4】
				C1P4【比较器 1 的正端输入通道 4】
				RSTB【复位引脚】
P26				P26
				AIN22【ADC 输入通道 22】
				0P1_0【运放 1 的输出端】
				COP5【比较器 0 的正端输入通道 5】
				C1P5【比较器 1 的正端输入通道 5】
P27				P27
				AIN23【ADC 输入通道 23】
				OP1_N【运放 1 的负端】
P30	I/0	Р3 🗆	P31 默认	P30
		每个口都可以设置	为上拉打	AIN24【ADC 输入通道 24】
		为输入或者输出模	开,其他	OP1_P【运放 1 的正端】
P31		式	引脚默认	P31
		输入模块可以使能	为高阻输	AIN25【ADC 输入通道 25】
		内部上拉	入	HCK 【烧写调试时钟引脚】
		输出模块可以设置		SCL 【12C SCL】
		开漏输出		

引脚的功能描述,表示 IO 模拟功能与非任意数字引脚的功能说明表。 模拟功能与非任意数字引脚功能描述表:

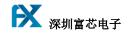
功能编号	功能名字	功能说明
1	AINO~26	模拟 ADC 输入通道 0~26
2	OSCIN/OSCOUT	外部晶振输入/输出
3	C0P0-5	模拟比较器 0 的正端输入通道 0~5
4	C1P0~5	模拟比较器 1 的正端输入通道 0~5
5	CONO~1	模拟比较器 0 的负端输入通道 0~1
6	C1N0~1	模拟比较器 1 的负端输入通道 0~1
7	0P0_P	运放 0 正向输入外部端口

第 10 页 / 共 25 页

深圳富	心电于 Built-in	12Bit ADC/IIC/SPI/UART/PGA/CMP16K FLASH/IT 8051MCU
8	OPO_N	运放 0 负向输入外部端口
9	0P0_0	运放 0 输出外部端口
10	OP1_P	运放1正向输入外部端口
11	OP1_N	运放 1 负向输入外部端口
12	0P1_0	运放1输出外部端口
13	OP2_P	运放2正向输入外部端口
14	OP2_N	运放 2 负向输入外部端口
15	0P2_0	运放 2 输出外部端口
16	НСК	烧录/调试功能时钟输入
17	HDA	烧录/调试功能数据输入输出
18	SCL	I2C 的时钟
19	SDA	I2C 的数据
20	SPICLK	SPI 时钟
21	MOSI	SPI 的 MOSI
22	MISO	SPI 的 MISO


IO 数字功能任意 mapping 功能描述表:

功能编号	功能名字	功能说明
1	CMP1_DO	比较器 1 数字 I0 输出
2	CMPO_DO	比较器 0 数字 I0 输出
3	UART1_TX	UART1 TX 输出
4	UARTO_TX	UARTO TX 输出
5	STMR5_PWM	高级 Timer5 PWM 输出
6	STMR4_PWM	高级 Timer4 PWM 输出



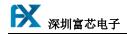
深圳富	心电于 Built-in	12Bit ADC/IIC/SPI/UART/PGA/CMP16K FLASH/1T 8051MCU
7	STMR3_PWM	高级 Timer3 PWM 输出
8	STMR2_PWM	高级 Timer2 PWM 输出
9	STMR1_PWM	高级 Timer1 PWM 输出
10	STMRO_PWM	高级 TimerO PWM 输出
11	BUZ	蜂鸣器定时器 PWM 输出
12	WUT_PWM/CLKO	唤醒 Timer PWM 输出/时钟 IO 输出
13	TMR4_PWM	普通 Timer4 PWM 输出
14	TMR3_PWM	基本 Timer3 PWM 输出
15	TMR2_PWM	基本 Timer2 PWM 输出
16	TMR1_PWM	基本 Timer1 PWM 输出
17	TMRO_PWM	基本 TimerO PWM 输出
18	TMRO_Cap	基本 TimerO Capture 输入
19	TMR1_Cap	基本 Timerl Capture 输入
20	TMR2_Cap	基本 Timer2 Capture 输入
21	TMR3_Cap	基本 Timer3 Capture 输入
22	TMR4_Cap0	普通 Timer4 Capture 0 输入
23	TMR4_Cap1	普通 Timer4 Capture 1 输入
24	TMR4_Cap2	普通 Timer4 Capture 2 输入
25	UARTO_RX	UARTO RX 输入
26	UART1_RX	UART1 RX 输入
27	WUT_CAP	唤醒 Timer Capture 输入
28	WKUP_INO	I0 唤醒通道 0 输入
29	WKUP_IN1	IO 唤醒通道 1 输入
30	WKUP_IN2	IO 唤醒通道 2 输入

第 12 页 / 共 25 页

31	WKUP_IN3	IO 唤醒通道 3 输入
32	FB_IN	IO 故障刹车信号输入
33	ADC_ETR	ADC 外部 IO 触发信号输入

2. MCU 电气参数

2.1. 绝对最大额定值


符号	参数 条件		最小值	典型值	最大值	单位	
V_{vcc}	MCU 工作电压	_	2. 4	5	5. 5	V	
1/ (1)	模拟部分工作电压 (未使用 ADC/DAC)	_	2. 4	5	5. 5		
$V_{VCCA}^{(1)}$	模拟部分工作电压 (使用 ADC/DAC)	_	2.4	5	5. 5	V	
Vpin	引脚输入电压	_	GND-0.3	_	VCC+0.3	V	
T_A	工作温度	_	-40	_	105	$^{\circ}$	
Tst	存储温度	_	-55	_	150	$^{\circ}$	
$I_{ m vcc}$	经过 VCC 和 VCCA 电源 线总供电电流	_	_	_	75	mA	
$I_{ m vss}$	经过 VSS 地线的总电流	-	_	_	75	mA	

2.2. 直流电气特性

符号	参数	条件	最小值	典型值	最大值	单位
VCC	MCU 工作电压	Fsys=0 to 48Mhz	2. 4	5	5. 5	V
<i>U</i> (1)	模拟部分工作电压 (未使用 ADC/DAC)	Fsys=0 to 48Mhz	2. 4	5	5. 5	V
$V_{VCCA}^{(1)}$	模拟部分工作电压 (使用 ADC/DAC)	Fsys=0 to 48Mhz	2. 4	5	5. 5	V
I	工学工作档式	VCC=5V, Fsys=48Mhz, 所有外设关闭,晶振关闭	_	5. 38	-	mA
I_{VCC}	正常工作模式	VCC=5V, Fsys=24Mhz, 所有外设关闭,晶振关闭	_	3. 82	_	mA

※ 深刃	富芯电子	Built-in 12Bit ADC/IIC/SPI/U	ART/PGA/CI	MP16K FLA	ASH/17 805.	IMCU
		VCC=5V, Fsys=16Mhz, 所有外设关闭,晶振关闭	_	3. 30	_	mA
		VCC=5V, Fsys=8Mhz, 所有外设关闭,晶振关闭	_	2. 75	_	mA
		VCC=5V, Fsys=64Khz, 所有外设关闭,晶振关闭	_	895	_	uA
		VCC=3. 3V, Fsys=48Mhz, 所 有外设关闭,晶振关闭	_	5. 04	_	mA
		VCC=3. 3V, Fsys=24Mhz, 所有外设关闭,晶振关闭	_	3. 62	_	mA
		VCC=3.3V, Fsys=16Mhz, 所 有外设关闭,晶振关闭	_	3. 13	_	mA
		VCC=3.3V, Fsys=8Mhz, 所有外设关闭,晶振关闭	_	2. 63	-	mA
		VCC=3.3V, Fsys=64Khz, 所有外设关闭,晶振关闭	_	842	-	uA
_	休眠电流	VDD=5V, 所有外设关闭, IO 唤醒	_	5. 4	-	uA
$I_{ m sleep}$		VDD=3.3V, 所有外设关 闭, IO 唤醒	_	3. 4	_	uA
$V_{ m IL}$	输入低电平电压	-	VSS	-	0. 3VCC	V
$V_{ m IH}$	输入高电平电压	-	0. 5VCC	-	VCC	V
R_{PU}	上拉等效电阻	_	_	25	-	kΩ
R _{PD}	下拉等效电阻	-	-	25	-	kΩ
C ₁₀	I/0 引脚的电容	-	2.5	3	3. 5	pF
V_{OL}	输出低电平电压	不带负载	_	-	0. 1VCC	V
V_{OH}	输出高电平电压	不带负载	0. 9VCC	-	-	V

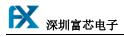
2.3. 交流电气特性

2.3.1. 上电和掉电时的工作条件

上电和掉电时的工作条件:

符号	参数	条件	最小值	最大值	单位
t _{VCC}	V_{VCC}	T - 07%	5	-	3.6
t _{VCCA}	V _{VCCA}	$T_A = 27^{\circ}C$	5	-	μs

上电和掉电状态:


		上电	掉电		
芯片状态	上电保护	上电复位	正常工作	低电复位	掉电复位
电源电压(单位: V)	<1.8	1.8 - 2.4	>2.4	<1.85	<1.65
系统耗电(单位: uA)	<0.2	>300	正常上电,功耗由 系统时钟频率及外 设决定	≈300	<0.2

2.3.2. 内嵌复位和电源控制模块特性

符号	参数	条件	最小值	典型值	最大值	单位
		LVDCON0[4:2]=0x0,掉电检测 阈值/上电检测阈值,TA=25℃	-	1.85/2.05	_	V
나 다사 >		LVDCON0[4:2]=0x1,掉电检测 阈值/上电检测阈值,TA=25℃	_	2.05/2.25	_	V
		LVDCON0[4:2]=0x2,掉电检测 阈值/上电检测阈值,TA=25℃	_	2. 25/2. 45	_	V
	可编程的 电压检测	LVDCON0[4:2]=0x3,掉电检测 阈值/上电检测阈值,TA=25℃	-	2. 50/2. 75	-	V
VCC_{PVD}	器的电平 选择	LVDCON0[4:2]=0x4,掉电检测 阈值/上电检测阈值,TA=25℃	-	2.80/3.10	_	V
		LVDCON0[4:2]=0x5,掉电检测 阈值/上电检测阈值,TA=25℃	-	3. 40/3. 70	_	V
		LVDCON0[4:2]=0x6,掉电检测 阈值/上电检测阈值,TA=25℃	_	3.85/4.20	_	V
		LVDCON0[4:2]=0x6, 掉电检测 阈值/上电检测阈值, TA=25℃	_	4. 15/4. 50	_	V
V _{PVD} hyst (2)	VCC 迟滞	_	_	_	_	mV

Note: 以上数据来自于芯片性能验收测试,不在生产中测试.

第 16 页 / 共 25 页

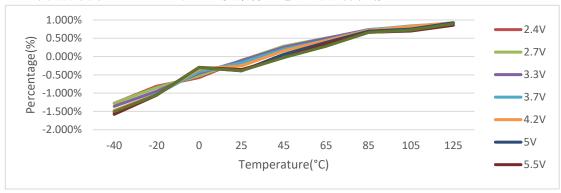
2.3.3. 外部时钟源特性

低速晶振特性:

符号	参数	条件	最小值	典型值	最大值	单位
f_{xoscm}	用户外部低速时钟频率	_	_	32. 768	-	KHz
$V_{{\scriptscriptstyle BIAS}}$	XOSCI/XOSCO 偏置电平	_	_	770	_	mV
V_{xoh}	XOSCI 输入引脚高电平电压	-	-	975	-	mV
V_{xol}	XOSCO 输入引脚低电平电压	-	-	525	-	mV
Duty _(xoscm)	占空比	_	42	_	58	%
I_L	低速时钟功耗	-	-	1.5		uA
ACC_{xoscm}	HSE 精度	_	_	_	_	ppm
$t_{SU(xoscm)}$	启动时间	_	_	2	-	s

高速晶振特性:

符号	参数	条件	最小值	典型值	最大值	单位
f_{xoscm}	用户外部高速时钟频率	-	4	16	40	MHz
${ m V}_{{\scriptscriptstyle BIAS}}$	XOSCI/XOSCO 偏置电平	_	_	770	_	mV
V_{xoh}	XOSCI 输入引脚高电平电压	_	-	975	-	mV
V_{xol}	XOSCO 输入引脚低电平电 压	_	_	525	_	mV
Duty _(xoscm)	占空比	_	42	_	58	%
I_L	高速时钟功耗	-	-	350	-	uA
ACC_{xoscm}	HSE 精度	_	_	_	_	ppm
$t_{SU(xoscm)}$	启动时间	_	_	5	_	ms

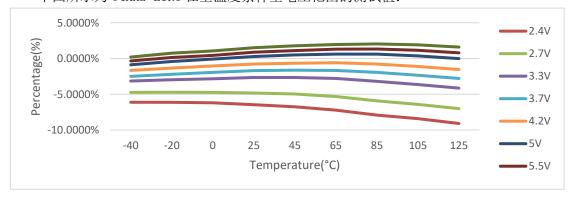


2.3.4. 内部时钟源特性

HIRC 振荡器特性:

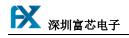
符号	参数	条件	最小值	典型值	最大值	单位
V _{VCCA}	供电电压	_	2. 4	5.0	5. 5	V
f_{HRC}	频率	25℃ trim后测 试(精度 0.5%)	_	48	_	MHz
ACC _{HSI} (3)	HSI 振荡器的精度	-40℃至 85℃	_	_	_	%
t _{SU(HSI)}	HSI 振荡器启动时 间	_	_	60	_	us
I _{VCCA(HSI)}	HSI 振荡器功耗	平均功耗	_	1.1	_	mA

下图所示为 48MHz HIRC 在全温度条件全电压范围的测试值:



HIRC 全温度范围偏差百分比

LIRC 振荡器特性:


符号	参数	条件	最小值	典型值	最大值	単位
f_{LRC}	频率	TA=25℃	-	64	-	kHz
$I_{\mathit{DD}(\mathit{LSI})}$	LSI 振荡器功耗	_	-	0.5	_	uA

下图所示为 64KHz LIRC 在全温度条件全电压范围的测试值:

LIRC 全温度范围偏差百分比

第 18 页 / 共 25 页

2.4. **IO** 驱动能力特性

符号	参数	条件	最小值	典型值	最大值	単位
		VCC 5V 供电, IO 驱动能力配置档位 0x00, V0=4V	-	2. 5	-	mA
	IO 端口推电流	VCC 5V 供电, IO 驱动能力配置档位, 0x1F, V0=4V	-	50	-	mA
10		VCC 3.3V 供电, IO 驱动能力配置档位 0x00, V0=2.64V	-	1	_	mA
		VCC 3.3V 供电, IO 驱动能力配置档位 0x1F, V0=2.64V	_	25	_	mA
		VCC 5V 供电, IO 驱动能力配置档位 0x00, V0=1V	_	9	-	mA
10	10 端口灌电流	VCC 5V 供电, IO 驱动能力配置档位 0x1F, V0=1V	_	125	-	mA
10	│ 1○ 炯 □ 催 电 ////	VCC 3.3V 供电, IO 驱动能力配置档位 0x00, V0=0.66V	_	4. 5	_	mA
		VCC 3.3V 供电, IO 驱动能力配置档位 0x1F, V0=0.66V	_	70	_	mA

2.5. 模拟电气特性

2.5.1. 12 位 ADC 特性

符号	参数	条件	最小 值	典型值	最大值	单位
V _{VCCA}	供电电压	_	2.8	5. 0	5. 5	V
I _{VCCA} ⁽¹⁾	电流消耗	VCCA 充当参考	-	360	_	uA
f_{ADC}	ADC 时钟频率	_	_	_	9.6	MHz
Fconv	转换率	_	_	_	480	KHz
R _{AIN} (2)	外部输入阻抗	_	_	_	_	Kohm

第 19 页 / 共 25 页

C _{ADC} (2)	内部采样和保持 电容	-	-	_	_	pF
t _{STAB} (2)	上电时间	_	_	_	1000	us
t _{conv} (2)	采样时间	_	5	_	256	Tclk
ENOB (3)	有效位数 (参考电压为 5V)			10		Bit

注意: (3) ADC 输入信号附近的 IO 的输入/输出频率不高于 10KHz; ADC 的参考电压为 VCC, 满量程为 VCC; ENOB 10bit 是在 5V 稳压器供电下得到的测试结果,实际应用中会受到电源偏差而导致精度损失,其他电压下无法保证有效位 10bit 的性能;

2.5.2. 8 位 DAC 特性

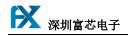
符号	参数	条件	最小值	典型值	最大值	单位
V _{VCCA}	模拟供电电 压	-	-	VCCA	-	V
I _{VCCA} ⁽¹⁾	电流消耗	-	_	20	_	uA
C_L	电容负载	_	-	2	_	pF
R_0	输出阻抗	_	-	_	60	Kohm
		寄存器输出配置 0x00	-	0.003	_	V
	电压输出 (内部选择 1.2V 参考)	寄存器输出配置 0x78	-	0.6	_	V
$V_{\mathit{DAC_OUT}}$		寄存器输出配置 0xF0~0xFF	_	1.2	_	V
		寄存器输出配置 0x00	_	0.007	_	V
	电压输出 (内部选择 VCCA 参考)	寄存器输出配置 0x78	_	VCCA/2	_	V
	- • • •	寄存器输出配置 0xF0~0xFF	_	VCCA	_	V
DNL ⁽¹⁾	非线性误差	_	-	±0.5	-	LSB
INL ⁽¹⁾	线性误差	_	-	3	-	LSB
Offset ⁽¹⁾	编码偏移误 差 0x800	-	_	_	_	mV

2.5.3. 比较器特性

符号	参数	寄存器配置	最小值	典型值	最大值	单位
V _{VCCA}	模拟供电电 压	_	2. 4	5. 0	5. 5	V
OFFSET	失调电压	_	-	2	_	mV
DELAY ⁽¹⁾	传播延时	_	_	180	_	ns
$I_q^{(2)}$	工作电流均值	_	_	120	_	uA

2.5.4. 运放特性

符号	参数	条件	最小值	典型值	最大值	单位
VCCA	模拟供电电	_	2.4	5.0	5. 5	V
	压					
TEMP	工作温度	_	-40	40	125	С
VDD		_	1. 35	1.5	1.65	V
OPA 模式						
共模输入电压	共模输入电	_	0	_	VCCA-1.5	V
	压					
输出范围	输出范围	全驱动能力	0.3	_	VCCA-0.3	V
	输出范围	非全驱动能力	0	_	VCCA	V
	Offset	校正前	-5	_	5	mV
Offset	Offset	校正后 TT	-	_	1	mV
	Offset	校正范围 TT	-10	_	10	mV
de L. J. Le		单个使能	-	0.55	-	mA
静态功耗	静态功耗	三个使能	-	1.6	-	mA
	积分噪声	1-1K	-	-	-	uVrms
积分噪声	积分噪声	1K-100K	-	_	-	uVrms
	积分噪声	100K-10M	_	_	_	uVrms
PSRR (monte	PSRR	1-1K	_	_	_	dB
carlo)	PSRR	1-1M	_	_	_	dB



	DCDD	1 10	_	_	_	ID.	
	PSRR	1-1G	_	_	_	dB	
正相放大 OP 模式							
增益档位	增益档位	_	0	_	53	dB	
单位增益带宽积	GBW	_	_	8.6	_	MHz	
THE ALBERT	积分噪声	1-62K(54dB增益等	_	15	_	uVrms	
积分噪声		效输入噪声)					
压摆率	SR	_	_	_	8	V/us	
通道隔离度	隔离度	输出频率 1kHz	_	_	_	dB	
负相放大 OP 模式							
增益档位	增益档位	_	-6	_	53	dB	
THE ALBERT	积分噪声	1-62K(54dB 增益等	_	7	_	uVrms	
积分噪声		效输入噪声)					
压摆率	SR	_	_	_	8	V/us	
通道隔离度	隔离度	输出频率 1kHz	_	-	_	dB	

2.6. 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{prog}	编程电压	_	2.8	5.0	5. 5	V
t_{prog}	Byte 编程时间	_	ı	160	-	us
t _{RC}	读操作时间	_	38	_	70	ns
$\mathrm{t}_{\mathtt{erase}}$	页擦除时间	_	ı	100	-	ms
$t_{\mathtt{ME}}$	整片擦除时间	_	-	100	_	ms
		读模式 (@25MHz)	3. 7	_	4. 5	mA
I_{DD}	供电电流	写模式	-	8	_	mA
		擦除模式	-	9	_	mA
NEND	寿命(擦写次数)	在 105℃高温 环境中擦写 10 万次	-	10	_	万次
t_{RET}	数据保存期限	常温擦写10万 次之后,再放 到105℃高温 烘烤	-	10	_	年

第 22 页 / 共 25 页

2.7. EMC 特性

2.7.1. ESD 电气特性

符号	参数	测试条件	最大值	単位	等级
ECD	静电放电 (人体放电模型 HBM)	TA = + 25℃, JEDEC EIA/JESD22-A114	6000	V	-
ESD	静电放电 (元件充电模型 CDM)	TA = + 25℃, JEDEC EIA/JESD22-C101-B	1000	V	-

2.7.2. Latch-Up 电气特性

符号	参数	测试条件	测试类型	最小值	单位
LU	Static latch-up class	JEDEC STANDARD NO.78D NOVEMBER 2011	Class I (TA = +25 ℃)	±200	mA

2.8. GATE DRIVER 电气特性

2.8.1. 绝对最大额定电压(T.=25℃)

符号	参数	条件	最小值	典型值	最大值	单位
VCC, VCCP	电源电压	_	-0.3	-	55	V
VH01, VH02, VH03	高侧输出电压	-	VM-12	-	WM	V
VL01, VL02, VL03	低侧输出电压	-	-0.3	-	12	V
VDD	LDO 输出电压	-	-0.3	-	5. 5	V
HIN1, HIN2, HIN3 LIN1, LIN2, LIN3	逻辑输入电压	-	-0.3.	-	7	V
$T_{ m J}$	工作温度	-	-40	_	150	$^{\circ}\!\mathbb{C}$
TA	工作环境温度	_	-40	_	125	$^{\circ}\!\mathbb{C}$
$T_{ m stg}$	存储温度	-	-65	-	150	$^{\circ}$
θја	热阻	_	80	_		°C/W

注意:超过额定参数所规定的范围将对芯片造成损害,无法预料芯片在额定参数范围外的工作状态,而且若长时间工作在额定参数范围外,可能影响芯片的可靠性。

2.8.2. 推荐工作范围(T₄=25℃)

符号	参数	条件	最小值	典型值	最大值	单位
VCC, VCCP	电源电压	-	5	-	24	V
VH01, VH02, VH03	高侧输出电压	-	VM-10	-	VM	V
VL01, VL02, VL03	低侧输出电压	-	-0.3	-	10	V
VDD	LDO 输出电压	-	-0.3	-	5. 0	V
HIN1, HIN2, HIN3 LIN1, LIN2, LIN3	逻辑输入电压	-	-0.3	-	5	V
TA	工作环境温度	-	-40	-	125	$^{\circ}$

2.8.3. 电学特性参数(V_{cc} =24.0V, C_l=1000pF, T_a=25°C)

符号	项目	条件	最小	典型	最大	单位
工作电流						
Vm 静态电流	Ivm_on		-	600	-	uA
Vm 静态电流	Ivm_off	Vm=24V, EN=0		6. 5		uA
Vm 静态电流	Ivm_off	Vm=12V, EN=0		1.5		uA
Vm 静态电流	Ivm_off	Vm=5V, EN=0		0.1		uA
PWM 逻辑输入物	· 导性					
$V_{\scriptscriptstyle \mathrm{INH}}$	逻辑高电位	-	1.8	-	5 . 0	V
$V_{\scriptscriptstyle \mathrm{INL}}$	逻辑低电位	-	0	-	0.8	V
$R_{ ext{PD}}$	下拉电阻	_	-	80	-	KΩ
输出驱动能力						
$ m V_{HO}$	高侧上管输出电压	HINx=5V, VCC≤10V	1	-	-	V
		HINx=5V, VM>10V	-	VM-10	ı	V
V_{LO}	低侧下管输出电压	LINx=5V, VCC≤10V	-	VM-1.5	I	V
		LINx=5V	-	0	_	V
${ m I}_{ m OHL}$	高侧/低侧 上管输出峰值电流	HO=VM / LO=O	_	300	-	mA

第 24 页 / 共 25 页

	= '								
${ m I}_{ m OLL}$	高侧/低侧 下管吸收峰值	HO=VM-10/	-	80	_	mA			
	电流	L0=10V							
LDO 输出特性									
$V_{\scriptscriptstyle DD}$	VDD 输出电压		4. 7	5. 0	5. 3	V			
保护特性									
V_{CCUV_R}	VCC UVLO 上升保护阈值	_	-	4. 25	-	V			
V_{CCUV_F}	VCC UVLO 下降保护阈值	_	-	4. 05	-	V			
$V_{\text{CCUV_H}}$	VCC UVLO 迟滞	_	-	200	-	mV			
T_{TSD}	过温保护点	-	_	150	_	$^{\circ}$			
$T_{ ext{HYS}}$	过温保护迟滞	-	_	15	_	$^{\circ}$			

2.8.4. 动态电学参数(V_{cc} =24.0V, C_c=1000pF, T_a=25℃)

符号	参数名称	测试条件	最小值	典型值	最大值	单位
TOND	开通延时		_	90	180	ns
TOFFD	关断延时		_	45	90	ns
THR	上管上升时间	V _{cc} =24.0V	_	40	80	ns
THF	上管下降时间	$C_L = 1000 pF$	_	100	200	ns
TLR	下管上升时间	T _A =25°C	_	100	200	ns
TLF	下管下降时间		_	40	80	ns
DT	死区时间		_	50	_	ns